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T(k) is known experimentally and hence (A17) can be numerically evaluated for a given K for different q's using 
R as a parameter. No doubt formula (A 17) is valid for all R, but if we follow the above procedure we no more 
have an explicit formula for the width. Even formula (A17) does not circumvent the difficulty of not knowing 
T(K) very accurately. To see this we proceed to make some approximations. 

R 1 r° r R2 - i l r+*f r R2 n 1 
W(K+q)-W(K)~ / kT(k)dkexp\ (K-k)2 \— exp [%2+2(K-k)x~] - 1 \dx. (A18) 

Expanding the exponential in the curly brackets and integrating we have 

R* a2 1 r r R2 n 
W(K+q)-W(K)~ / * r (*)exp (K-k)2 UR2(K-k)2-lJdk, (A19) 

2\/w K 12J0 L 4 J 

where we have retained terms up to order q2 only. From a scrutiny of the integrand one sees the importance of the 
weighting factors. I t is obvious that if the function T (K) is not known accurately in the region of K values where 
the function is rising rapidly, we would introduce a large error in the value of the integral. I t is also clear that one 
obtains a large negative value for the integral for that value of K for which there occurs a peak in T ( K ) . Detailed 
numerical computation would be justified when more accurate experimental data are available. 
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A theoretical study is made of the density-proportional paramagnetic shift of the resonant magnetic field 
observed in nuclear magnetic resonance studies of Xe129 in pure xenon gas by Streever and Carr. The theory is 
based on a computation of the chemical shift in "diatomic molecules" formed by colliding Xe atoms, includ
ing the effects of van der Waals and exchange interactions on the wave function of the colliding atoms. The 
results of this calculation show that only the exchange interactions between the colliding atoms make a 
significant contribution to the chemical shift. When averaged over the various types of collisions, the follow
ing value is obtained for the shift in the resonant field: A//= — 2.85(10)~7Hp, where H is the field strength 
and p is the density in amagats. This is in order-of-magnitude agreement with the observed result: AH 
= -4.3(io)-yy. 

I. INTRODUCTION a pair of colliding Xe atoms, Ramsey's theory of mag-

NUCLEAR magnetic resonance studies of Xe 1 ^ *etic shielding connects the chemical shift and the 
( 7 = | ) in pure xenon gas at high pressures have nudear-spm rotational coupling constant.* The nuclear-

yielded two interesting and related results.1'* First, the s ? m rotational coupling is a potential relaxation mecha-
spin-lattice relaxation time, although inversely pro- nism because it permits the nuclear spins to exchange 
portional to the density of the gas as expected,* was angular momentum with the rotational momentum of 
much too short to be accounted for by the relaxation t

i
h e C0}Ml^ a t 0 I f ; Torrey showed that if one assumed 

mechanism of magnetic dipole-dipole interactions be- ^ a t ^ observed shift in the resonant field was due to 
tween the nuclei of colliding atoms.* Secondly, there was c * e m i ca l shifts m diatomic molecules of colliding Xe 
a paramagnetic shift of the resonant value of the mag- a t o m f> a n d . f e d t h e experimental value of the shift 
netic field, which was proportional to the density of the together with Ramsey s formula to determine the 
gas and to the magnetic field strength. nuclear-spin rotational coupling constant, then one 

The relation between these results was established by obtained a computed value for the Xe™ relaxation time 
Torrey,3 who pointed out that in a diatomic molecule, w h l d l w a s m § o o d agreement with experiment. 
which may be used as an approximate representation of i Therefore, the sole remaining task m connection with 

this problem is to compute the chemical shift expected 
* Work supported by the U. S. Bureau of Naval Weapons, De- for a pair of colliding Xe atoms as a function of separa-

partment of the Navy, under Contract No. NOw62-0604-c. f- J f whe ther <5iirh a shift a v e r t e d over all 
1 R . L. Streever and H. Y. Carr, Phys. Rev. 121, 20 (1961). n o n > a n a t 0 s e e w n e m e r s u c n a s m i t averaged over all 
2 E . R. Hunt and H. Y. Carr, Phys. Rev. 130, 2302 (1963). 
3 H. C. Torrey, Phys. Rev. 130, 2306 (1963). 4 N. F. Ramsey, Phys. Rev. 78, 699 (1950). 
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types of collisions is in agreement with the observed re
sult. Such a calculation also tells us which of the inter
atomic forces experienced by the colliding atoms, that 
is, attractive van der Waals forces and repulsive ex
change forces, makes the greatest contribution to the 
chemical shift. Actually, such a calculation was carried 
out some time ago by the author in an attempt to ex
plain the Xe129 relaxation by the nuclear-spin rotational 
coupling mechanism.5 This calculation considered only 
the van der Waals part of the interatomic interaction 
and gave a value for the nuclear-spin rotational coupling 
constant which was much too small to account for the 
observed relaxation. A more refined calculation of the 
contribution of the van der Waals forces to the chemical 
shift, which will be described in this paper, also gives a 
negligible result. Recent extension of Hartree-Fock cal
culations to the very large atoms6 has provided us with 
xenon atomic orbitals which are sufficiently accurate to 
permit an approximate calculation of the contribution of 
exchange forces to the chemical shift. The result of this 
calculation is sufficiently close to the experimental re
sult to prove that exchange interactions between collid
ing Xe atoms provide the chemical shift and spin-
lattice relaxation of Xe129. 

II. THEORY 

Let us consider a pair of xenon atoms with a separa
tion R measured along the z axis, and with the external 
magnetic field along the x axis. We denote these atoms 
as A and B, and we compute the magnetic shielding for 
atom A. It has been shown by Ramsey4 that if the mag
netic field is parallel to the internuclear axis of a di
atomic molecule, then all magnetic shielding effects 
which depend on the interaction of the two atoms 
vanish. Thus, we calculate the chemical shift for the 
magnetic field perpendicular to the internuclear axis, 
and later average over all possible field orientations. 

The calculation of magnetic shielding effects can be 
simplified, and physically reasonable approximations 
made more readily discernible, by proper choice of the 
gauge of the vector potential of the magnetic field.7 

Since we are computing the magnetic shielding for 
nucleus A, the best choice for the vector potential A# 
of the external magnetic field H is 

Atf=iHxr 0 , (l) 

where rfl is the radius vector from nucleus A. The ad
vantage of this choice of gauge is that it puts the orbital 
Zeeman perturbation in terms of angular momenta 
measured about this nucleus, with the result that con
tributions from that part of the electronic wave function 

5 F. J. Adrian, thesis, Cornell University, 1955 (unpublished); 
available from University Microfilms, Inc. 

8 F. Herman and S. Skillman, Atomic Structure Calculations 
(Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1963). 

7 A good discussion of gauge considerations in magnetic shield
ing calculations is given by C. P. Slichter, Principles of Magnetic 
Resonance (Harper and Row, New York, 1963), Chap. 4. 

which is spherically symmetric with respect to this 
nucleus can be eliminated by inspection. For another 
choice of gauge, the contribution of the spherically 
symmetric part of the wave function, although still zero 
in principle, appears as two terms whose exact can
celation may be lost in approximate calculations. 

In this two-center calculation, however, use of Eq. 
(1) complicates the vector potential seen by the elec
trons of atom B. This is a significant feature of the cal
culation. It is seen below that this vector potential act
ing on the electrons of atom B produces orbital polariza
tion of the closed electronic shells of this atom, and that 
the transmission of this orbital polarization to atom A 
via the exchange interaction produces the observed 
chemical shift. Except for interatomic exchange terms, 
however, this form for the vector potential is an un
necessary complication. In computing matrix elements 
involving orbitals of one atom only, it is possible to 
choose the gauge separately for each atom so that the 
vector potential always has the simple form of Eq. (1). 
Formally, this is done by using gauge-invariant atomic 
orbitals.8 For atom B these orbitals are defined by the 
equation 

b/(rb) = bi(tb) exp(ieAH&-r6/fe) , (2) 

where bi is the ^th atomic orbital of B, b{ is the cor
responding gauge invariant orbital, r& is the radius vec
tor from nucleus B, and A#& is the vector potential at 
nucleus B. A similar set of orbitals can be defined for 
atom A. The advantage of the gauge-invariant orbitals 
is readily seen if we consider the momentum operator 
[p~ (e/c)^H~] for a vector potential defined with respect 
to an arbitrary origin. Using the relation p=— vhv 
and Eq. (1) for A#, it is readily shown that 

(b/1 p - {e/c)kH | bif) = {^ | p - (s/2c)H x r61 bt). (3) 

This equation shows that use of gauge-invariant orbitals 
for calculating matrix elements of the momentum opera
tor between orbitals centered on the same atom is 
equivalent to using ordinary orbitals and choosing the 
vector potential so that it is zero at the nucleus of this 
atom. 

The disadvantage of the gauge-invariant orbitals 
appears when exchange and overlap integrals must be 
considered, because such integrals will contain the field-
dependent phase factors present in these orbitals. 
Since exchange and overlap effects are of paramount 
importance in this calculation, and since the appearance 
of field-dependent factors in the overlap and exchange 
integrals is an undesirable complication, we adopt the 
following procedure. First, we compute the magnetic 
shielding considering only the relatively long-range van 
der Waals interaction between the two Xe atoms, using 
the gauge-invariant orbital procedure. It is found that 
the resulting chemical shift is negligible. Then we con
sider the short-range exchange interactions. For this 

8 F. London, J. Phys. Radium 8, 397 (1937): J. A. Pople, Mol. 
Phys. 1, 175 (1958). 
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calculation we choose the gauge so that the vector po
tential is given by Eq. (1). 

A. van der Waals Interaction 

Following the procedure just discussed, we use 
ordinary atomic orbitals, and pick the gauge inde
pendently for each atom so that each atomic orbital 
sees a vector potential of the form of Eq. (1) with the 
origin at the center of the orbital. This gives the 
following Hamiltonian: 

3 C = Z / (2m)" 1 [p , - (e/2c)RXrav- (e/c)kNavJ 
+ L , B (2m)~1[p,- (e /2c)HXr& , - (e/c)ANavJ 

• +VA+VB+Wv. (4) 

Here, £)„A and X^B denote the sum over the electrons of 
A and B, respectively; VA and VB are the internal po
tential energies of atoms A and B, and 3Cy is the van der 
Waals interaction Hamiltonian. The quantity kNav is 
the vector potential of the magnetic moment of nucleus 
A acting on the pth electron. I t is given by the expression 

Ajya,= yAX rav/r a ,3 , (5) 

where #A is the magnetic moment of nucleus A. We neg
lect all terms associated with the operation of A^ap on 
electrons of B. I t has been shown by Torrey3 that such 
terms are negligible, the reason for this being that the 
magnetic effects associated with the nuclear moment of 
A fall off rapidly (as 1/r/) with distance. Thus, ex
panding the Hamiltonian of Eq. (4) and retaining only 
those terms which contribute to the magnetic shielding 
gives the effective Hamiltonian 

5 C = 5 C A + 5 C B + 5 C F + L , A (e2Hij,A/2mc2) 

X(;yav2+2a,2)/ra,3+£>A (f3HLaxv 

+2foALaxv/rav*)+Zv
BPHLbxv. (6) 

In deriving the foregoing Hamiltonian we have also 
used the facts that the magnetic field H is directed 
along the x axis and that the nuclear moment of A is 
quantized in the direction of H. The new symbols in 
Eq. (6) have the following meanings: 3CA and 3CB are 
the Hamiltonians of the isolated atoms A and B, re
spectively; /3 is the Bohr magneton; and Laxv and Lbxv 

denote the x component of the orbital angular momen
tum of the ^th electron about the nuclei A and B, re
spectively. The orbital angular momenta are in units 
of*. 

Let us take the zero-order Hamiltonian to be 5CA 
+ 3 C B + 3 C F , and compute up to second order those 
terms in the perturbation energy which are linear in H 
and /XA. Following Ramsey,4 we equate the resulting 
change in the nuclear Zeeman energy to a change — crxH 
in the magnetic field at the nucleus, where the magnetic 
shielding constant <rx is given by the expression 

<rx= (e*/2mc*){0 | £ / (yav
2+zav

2)A«,310) 
+2/3* Zn(Eo~En)-W I E / Laxv/rJ \ n) 

X ( ^ | E / ^ , + E , B ^ 6 ^ | 0 ) + C C ] . (7) 

Here, CC denotes the complex conjugate of the first 
term in the square brackets. 

The first term in Eq. (7) is just the diamagnetic shield
ing of the isolated atom plus small changes due to the 
perturbation of the Xe atom wave function by the van 
der Waals interaction. I t is readily shown, as it has been 
by Torrey,3 that the change in the diamagnetic shield
ing due to the van der Waals interaction is negligibly 
small. The reason for this is that the slowly varying func
tion (1/f) is very insensitive to small changes in the 
wave function, 

Thus, we turn to the paramagnetic shielding which is 
given by the second term in Eq. (7). Here, there is the 
possibility that the van der Waals perturbation of the 
atomic wave functions, which may be described as a 
partial excitation of the 5p orbitals to higher states, 
combined with the Zeeman interaction between the ex
ternal magnetic field and the orbital momentum of these 
distorted orbitals, produces a net electronic current in 
the Xe Sp orbitals. Such a current would produce a 
large magnetic field at the nucleus and, hence, a large 
magnetic shielding. The results of this calculation 
show, however, that this effect is small because of al
most complete cancelation of terms corresponding to 
currents of this type. 

In this calculation, the problem of summing over a 
variety of excited states is treated by the usual method 
of equating the energy of all excited states to an aver
age value. This should be a reasonably good approxi
mation because the energy difference between the low
est excited state of an Xe atom and the ionized atom is 
small compared to the ionization potential. Since the 
lower excited states should make a somewhat larger 
contribution to the sums than the higher states, we take 
the average energy of an excited state to be given by the 
formula 

AE= (E0-En)„=i(EQ-E1)-iEim&-9.6 eV. (8) 

Here, Ex is the energy of the lowest excited state and 
£ion is the ionization energy.9 By use of this approxi
mation, the paramagnetic part of the magnetic shield
ing constant, given by the second term in Eq. (7), can 
be rewritten as 

<rpx= (4/32/AE)(0| (EvA W « 8 ) 

X ( £ M A W t - E , B W | 0 > . (9) 

The van der Waals Hamiltonian has the form10 

X E x A H^{2za\zhn—xa\xbv—ya\ybv), (10) 

where the two sets of coordinates with origins at A and 

9 R. F. Bacher and S. Goudsmit, Atomic Energy States (McGraw-
Hill Book Company, Inc., New York, 1932), p. 505. 

10 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular 
Theory of Gases and Liquids (John Wiley & Sons, Inc., New 
York, 1954), p. 923. 
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B, respectively, are related by the transformations 

xb=xa; yb=ya; Zb^Za+R. (11) 

The van der Waals perturbed wave function to terms 
in first order is 

<aoft)|3Cr|a&-) 
V-aoPo+Z' a & , (12) 

where ao and on denote, respectively, the ground and 
ith. excited states of the isolated atom A, and similarly 
for jSo and ft-. Even though the change in the magnetic 
shielding is of second order in the van der Waals inter
action, we do not need to consider second-order terms 
in the van der Waals perturbed wave function. This is 
because all cross products involving the ground-state 
and second-order terms in the van der Waals perturbed 
wave function vanish because of the identity 

( E / £ « * „ + E M B Lbxil)aQPo=0. (13) 

Use of ^ given by Eq. (12) as the ground-state wave 
function in Eq. (9) for <rpxy and summation over the ex
cited states by use of the "average-energy approxima
tion' ' for the energy denominators of SI>, gives the 
equation 

cr„=C/3V(AE)3] 

X<aoPo|<ME*A Laxv/ra*) 
X(Z»ALax»+Z»BLbxil)3Cv\aoPo). (14) 

The evaluation of this expression is straightforward. In 
its evaluation two classes of terms arise according to 
whether the operator Laxv/rav* operates on the same 
electron orbital as the van der Waals operators or on a 
different orbital. It is the latter class of terms which 
describes the potentially large effect of the van der 
Waals excitation of a Sp electron followed by a magnetic-
field-induced current in the resulting Sp "hole." These 
large terms vanish if one includes intratomic exchange 
terms, a necessary step which was omitted in the 
author's original calculation.5 Thus, it is found that the 
contribution of the van der Waals interaction to <rpx 

is given by the expression 

crpx= Z36e^/R^AEyjr%p(l/r)5p, (15) 

where {r2)$p and (l/r)zP are the expectation values for a 
Xe Sp orbital. A rough estimate of this quantity 
shows that it is negligible. Taking (l/r)6p=la0, AE 
= — 9.6 eV, and introducing the experimental value of 
the polarizability11 a through the approximate relation12 

a=4e2(r2)*p/AE, gives apx= -(10)"8 at i?=4A. This 
is already less than the observed shift at 1 amagat 
density1,2 and is completely negligible when one aver-

11 Handbuch der Physik, edited by S. Flugge (Springer-Verlag, 
Berlin, 1956), Vol. 36, p. 192. 

12 H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry 
(John Wiley & Sons, Inc., New York, 1944), p. 354. 

ages over collisions, since a given atom only spends a 
very small fraction of its time within 4 A of another 
atom. 

The perfect cancellation of the large terms in summing 
Eq. (14) for apx is, of course, a result of the average 
energy approximation. Since the dependence of these 
large terms on the radial integrals is {r2)bP

2(l/r*)zp, 
which is several orders of magnitude larger than 
(r2)&p(l/r)5P) the following check was made on the 
accuracy of the "average-energy approximation." The 
obvious differences in excitation energies depend on 
whether the Sp electron is excited to an s, p, or d orbital, 
and the spin-orbit energy of the resulting Sp "hole." 
Thus, a calculation was performed in which excited 
states were classified according to whether the excited 
electron was in an s, p, or d state and whether the Sp 
"hole" was 5^/2 or 5pi/2, and different excitation ener
gies were assigned to the various types of excited states. 
(The classification of the various excited states and 
their separate summation was done with the aid of con
ventional methods of computing matrix elements of 
angular momentum operators.13) 

This calculation, which, although fairly straight
forward, is too lengthy to describe in detail here, gave 
the expected result. This was that no reasonable assign
ment of the various excitation energies gave a result for 
apx which was appreciably greater than the result 
given by Eq. (15). 

B. Exchange Interactions 

We now consider the contribution of exchange inter
actions between the colliding atoms to the magnetic 
shielding. As discussed previously, we take the vector 
potential in this calculation to be given by Eq. (1). 
Now it may seem inconsistent to choose one gauge for 
computing the exchange terms, while using a different 
approach based on gauge-invariant orbitals for com
puting those magnetic shielding effects which do not 
involve interatomic exchange. This, however, is not the 
case because, in this calculation, we can always dis
tinguish between exchange and nonexchange terms no 
matter what gauge is used. Consequently, each set of 
terms will be individually gauge invariant, and each 
can be computed using the most convenient choice for 
the vector potential. In fact, this calculation can be 
carried out using the vector potential of Eq. (1) 
throughout with the same results. The only difference 
is that in this approach two large terms of opposite 
sign appear in the nonexchange part of the magnetic 
shielding. It can be shown that these terms cancel 
exactly, but their appearance lengthens the discussion 
of the previous section, and detracts from its clarity. 

With the vector potential of the external field given 
by Eq. (1), the same procedures that led to the Hamil-

13 G. Racah, Phys. Rev. 62, 438 (1942). 
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tonian of Eq. (6) give the Hamiltonian 

5 C = 5 C A + 5 C B + 5 C A B + E / (e2#juA/2m<;2) 

+2foALaxv/ra*)+Y,v*mLaxv. (16) 

The only differences between this Hamiltonian and that 
of Eq. (6) are that the interaction between atoms is now 
represented by 3CAB, and, as a consequence of our choice 
of vector potential, all orbital angular momenta are 
measured with respect to nucleus A. 

I t is readily shown that the change in the diamagnetic 
shielding due to the exchange interaction is negligible. 
Let us take the ground-state wave function to be an 
antisymmetrized product of one-electron orbitals of the 
interacting atoms 

|aO|8o) = ^aJ,o(l)a1,,o(2)o0,o(3)6ajfo(4)Jyio(S)6,,o(6). (17) 

Here, G, denotes the operation of antisymmetrization 
and renormalization; ax,o, ay,o, and az,o are the Sp 
orbitals of atom A directed along the x, y, and z axes, 
respectively; and bx,^ &„,o, and bz,o denote the cor
responding orbitals for atom B. Since we are neglecting 
spin-orbit effects, we can treat the set of electrons with 
spin " u p " separately from the set of electrons with spin 
"down." Thus, the wave function in Eq. (6) and all 
subsequent calculations include only that set of elec
trons with one of the two possible spin orientations. 
The results of these calculations will thus be multi
plied by two to obtain the total result. With this wave 
function, it is readily shown that the change in (Xdx due 
to the exchange interaction is given by the approximate 
formula 

Aadx^—(e2/mc2)(az,o\b2,o) 

X (be,o 1 {ya
2+Za2)/ra

z 10«,o) 
^-(2e*/fnc*R)(az>0\bZt0)\ (18) 

Since, as is discussed below, (a*,o|62,o)2=4.3(10)-3 at 

Here, CC denotes the complex conjugate of the expres
sion in the square brackets. The first sum in the brackets 
represents the overlap effect, and the second sum is due 
to the excitation-transfer effect. As usual, the sum over 
the excited states in Eq. (20) is performed by replacing 
all the energy denominators by the average excitation 
energy given in Eq. (8). 

There are several different sums in Eq. (20), depend
ing on which orbital of B is initially excited. Let us con-

R=4t A, A<r<te= — 6(10)~8. This is negligible when aver
aged over collisions. 

Thus, we turn to the effect of exchange interactions 
on the second-order paramagnetic shielding. If we neg
lect possible effects due to the distortion of the ground-
state wave function by the exchange interaction, the 
qualitative features of this process are as follows. If the 
operator E*B Laxv is expanded in terms of coordinates of 
atom B using the coordinate transformation given by 
Eq. (11), the result is 

E , B Laxv=Z,B Lhxv~iR{d/dyhv). (19) 

The operator iR(d/dyb) can couple excited states of 
atom B with the ground state, thereby producing orbital 
polarization of this atom. In the absence of interatomic 
exchange, atom A is unaware of the orbital polariza
tion of B, and the magnetic shielding at A is unaffected 
by this polarization. Exchange interactions permit a 
partial transfer of the polarization of B to A, or, in other 
words, complete a circuit for the flow of field-induced 
electron currents from B to A. This current results in an 
additional magnetic field at nucleus A. 

The transfer of the orbital polarization from B to A 
occurs in two ways. The first way, which we call the 
overlap effect, is a consequence of the overlap of the 
orbitals of A and B combined with the Pauli exclusion 
principle. The second way, which we call excitation 
transfer, occurs because the exchange interaction couples 
states such as | ao0n), where A is in the ground state and 
B in the nth excited state, with states such as |cW3o), 
where A is excited to the mth excited state and B is in 
the ground state. The exchange coupling of such states 
is described by the matrix element (am^o\5CAB|«o/3n). 
The exchange interaction can also couple the state 
\oL$n) to doubly excited states such as \amfik), but we 
neglect these highly excited states. A perturbation 
theory calculation of the paramagnetic shielding in
corporating these effects gives the following equation 
for orpx: 

sider the case where the bz,0 orbital in Eq. (17) is ex
cited. I t is easily seen that the operator iR(d/dyb) can 
couple this orbital with excited orbitals of dyz sym
metry, which are denoted as byg,n. When this excitation 
is transferred to atom A, the excited states of A must 
have the corresponding symmetry, namely, they must 
be antisymmetric with respect to reflection in the xz 
plane. Such states can result either from the excitation 
of the aZi0 orbital to any excited orbital of y symmetry, 

,=?^[E» 
f (aofo I E M A Lay.x/rai? I aoPn)(aoPn I E» B - iR(d/dyb v) | a0Jtf0> 

E0-~En 

(a<fio I E M A UJra* | anfioXonfio | 3CAB | a0/?n)<ao/3n | E . B ~iR(d/dybv) | a0/50) 1 
+ Hn Em — hCC . (20) 

(Eo-EmXEo-En) J 
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that is, 
az,Q~-*ay,m . (21) 

or the excitation of the ay,o orbital to any excited orbital 
of z symmetry, namely, 

# I / , 0 — > & z , t n ' (22) 

For the excitation described by Eq. (21), the matrix 
element of the exchange interaction which transfers the 
excitation from B to A is 

(<XmPo\W>AB\oLQPn) 

= — / aZfo(l)byZ>n(2)^CABbz,oW^y,m(2)dTidr2. (23) 

Unfortunately, the evaluation of this integral cannot be 
performed with any degree of precision because of our 
ignorance of the excited-state wave functions. The best 
we can do is follow an approximation sometimes used in 
molecular orbital theory14 and set this integral equal to 
the product of the corresponding overlap integrals and 
an energy factor. This energy factor should be negative, 
since exchange integrals involving overlapping orbitals 
are negative and of the order of the excitation energy 
AE. This approximation gives the result 

/ ag,o(l)byg,n(2)5CABbg,o(i)ay,m(2)dTidT2 

= AE(az,0 | bZt0)(byz,n \ ay>m) • (24) 

For the excitation described by Eq. (22), the matrix 
element (am/301 3CAB | a$n) is given by an exchange in
tegral between mutually orthogonal orbitals. Such an 
exchange integral will be considerably smaller than the 
exchange integral in Eq. (23) which involves overlapping 
orbitals. We therefore neglect excitation transfers of the 
type described by Eq. (22). 

Using the approximation given in Eq. (24) for the 
excitation-transfer integral all of the sums involved in 
Eq. (20) for <rpx can be evaluated. We describe this proc
ess in some detail for the initial excitation bz,o—>byZtn 

combined with the excitation transfer state #2,o—> ay,m. 
In simplifying Eq. (20), we recall that the effect of the 
operator Lax on p orbitals of A is given by the relations 

We need not consider the effect of Lax on non-^> orbitals 
of A, because the matrix elements of the operator 
Lax/ra

z vanish for all such orbitals. Reduction of Eq. 
(20) using Eq. (8) and Eqs. (23) to (25) gives the partial 

14 C. J. Ballhausen, Introduction to Ligand Field Theory (Mc
Graw-Hill Book Company, Inc., New York, 1962), p. 162. 

result 

0"px(&z,O-~» bygfn) 

/4c/32(az>o\bz,o)i\ 
= I )C(^~3)5p Z n ' (ay,0 I byZtn) 

\ AE J 

X (byz,n | - iR(d/dyb) \ bz,o)—(r-3)j>p(ay>o \ by,0) 

/\Z^n 2-^rn \Vy,o\tty,m/\G'y,m\Oyz,n/ 

X(by..n\-iR(d/dyb)\b.,o) 

2-*n 2-tm \^2/,0|^a | &y,m/\(ly,m \ OyZtn) 

X(byz,n\-iR(d/dyb)\bz,o)~]. (26) 
The primes on the summation signs now mean that we 
omit from the sums orbitals which are occupied in the 
ground state. The first sum in this equation is due to 
the overlap effect and the remaining sums are due to 
excitation transfer. The first sum is readily evaluated 
because, except for the omission of terms involving 
occupied d orbitals of atom B, which are small because 
the overlap of the orbitals of A with the inner orbitals 
of B is very small, it is given by the relation 

Hn (ay,o\byz,n)(byztn\ —iR(d/dyb)\bz,o) 

^(ayt,\-iR{d/dyh)\bZ),). (27) 

This is readily seen by considering the expansion of ay,o 
in terms of the complete set of orbitals of atom B. 
Using Eqs. (19) and (25) and the Hermitian property of 
Lax and Lbx, we can readily show that 

(ayt0\—iR(d/dyb)\bz,o) 

= i [ - (aZ)01 bZ)Q)+(a^.o | J„fo>]. (28) 

Using the same procedures, we can show that the second 
sum in Eq. (26) is negligible. The evaluation of the 
third sum uses the same basic method, but for this 
case it is not valid to neglect the Spy orbital of A in 
summing over n because the quantity (ay$\r<rz\ay^ 
is very large. Thus, we get the following result for this 
sum: 

2-^n 2~tin \&y,0\fa \&y,m/\(ly,m\OyZyn) 

X(bv,,n\-iR(d/dyb)\b,,o) 

= fav.ol —ra~HR(d/dyb) \ bz>0) 

+ (r-*)6p(aVtQ (iR(d/dyb) \ bz>0). (29) 

The first term on the right-hand side of this equation is 
negligible because of the factor ra~

3, and the second 
term may be evaluated using Eq. (28). Thus, the total 
contribution of the excited states corresponding to the 
initial excitation bz,o —» byz,n to the paramagnetic shield
ing constant, including a factor of two resulting from an 
identical sum over the set of electrons with opposite 
spin, is 

<rpx(bz,o ~> byz,n) = (16P/AE)(r~%pSUS««+S^). (30) 
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In this equation, we have redefined the overlap integrals 
as follows: 

S<f<r= — (az,o | bz,o); 5 ™ = (aVto | by,0). (31) 

The sign change in the definition of Sff(T is a consequence 
of the choice of coordinate axes made in Eq. (11) which 
makes (aZ)o\bz,o) negative. 

Using the same procedures, the contribution to crpx 

resulting from the excitation of a Spy orbital of B was 
computed. The result of this calculation was 

<rPx(byio - » byVtn) = (16/52/AE) 

X (r~*)spSirr(S(ra+Sirir) . (32) 

The excitation of a Spx electron of B does not contribute 
to crpx because the resulting excited states have x sym
metry, i.e., they change sign upon reflection in the yz 
plane. Application of the operator Lax/ra

s to all such 
states gives zero. Thus, the net paramagnetic shielding 
due to exchange interactions between the atoms is 

*,«= (16t3*/AE)(r-s)5p(Saff+S„Ty (33) 

Equation (8) gives AE= — 9.6 eV, the result {r~*)z>p 

= 1.203(10)26 cm - 3 has been computed by Mayer,15 

and a calculation discussed in the following section gives 
the result (Sffff+STT)2=0.061 at R=4 A. Inserting these 
values into Eq. (33) gives apx= — 6.55(10)~5 at R=4 A, 
a result which is much larger than the magnetic shield-
ings resulting from any of the other effects discussed. 
The reason why this term is so much larger than the 
others is the presence of the large quantity (r~8)zp. 
This indicates that the external magnetic field, aided by 
the interatomic exchange interactions, has induced an 
electronic current in the 5p orbitals of atom A. This re
sults in a relatively large additional magnetic field at the 
nucleus of this atom. 

Finally, we consider the case where the magnetic 
field makes an angle 6 with the internuclear axis instead 
of being perpendicular to it. Since, as shown by Ramsey4 

ap vanishes when the field is parallel to the internuclear 
axis of a linear molecule, ap for the general case will be 
given by the formula 

ap= (Wt/AEXr-^S^+S^y sin20. (34) 

III. RESULTS AND DISCUSSION 

The net paramagnetic shielding of an Xe nucleus 
in gaseous xenon as a function of density will be given 
by an average of Eq. (34) for ap over all types of 
collisions. The average over collisions, which is essen
tially a time average, may, according to the usual 
procedures of statistical mechanics, be replaced by an 
ensemble average. This gives us the following expression 

for the paramagnetic shielding constant in Xe gas: 

W.,ffllrt-W>. TO 

Here, U(R) is the interaction energy of a pair of Xe 
atoms, and p is the density. 

For U(R) we have used the modified Buckingham 
(6-exp) potential16 

U(R) = 
6 • / r Ki\ 
- expl a\ 1 I 

[l-(6/a)]U \ L RjJ 

U(R) =oo R<Rmax-

(36) 

With the aid of experimental data on second virial co
efficients and the crystal properties of xenon, Mason and 
Rice17 determined the following values for the param
eters of this potential: Rm=4.450 A, e/£ = 231.2°K, and 
a= 13.0. This potential has the advantage that it is more 
flexible than the Lennard-Jones 6-12 potential,18 and 
gives a more realistic exponential variation of the re
pulsive exchange forces. I t has the disadvantage of 
having a spurious maximum at i£=i£max, but this really 
offers no difficulty because Rm2iX is much smaller than 
any reasonable interatomic distance. For this calcula
tion it is helpful to rewrite this potential in the form 

-Q R>Rn (37) 

where R0=3.930 A, e'/k = 226.1°K and a'= 11.48. The 
point RQ where the attractive and repulsive energies 
cancel may be regarded as the collision diameter, since 
the steep rise of the repulsive part of the potential does 
not permit appreciable interatomic penetration beyond 
this point. 

The overlap integrals which determine the dependence 
of ap on R were computed by fitting19 four exponential 
terms of the form ar*e~br to the outer lobe of the Xe Sp 
Hartree-Fock orbital given by Herman and Skillman.6 

The computation of the overlap integrals could then be 
performed using the analytical formulas of Mulliken 
et al.20 I t was found that for the interval 3.5 A < i ? < 5 A, 

15 D. F. Mayers, as quoted by J. R. Morton and W. E. Falconer/ 
J. Chem. Phys. 39, 427 (1963). 

16 Reference 10, p. 180. 
17 E. A. Mason and W. E. Rice, J. Chem. Phys. 22, 843 (1954). 
18 Reference 10, p. 162. 
19 The process of fitting an analytic form to a tabulated wave 

function is described by J. C. Slater, Phys. Rev. 42, 33 (1932). 
20 R. S. Mulliken, C. A. Rieke, D. Orloff, and H. Orloff, J. 

Chem. Phys. 17, 1248 (1949). 
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which accounts for nearly the entire contribution 
to (<rp), the function (S<ra+STT)2 could be fitted very 
well to the simple exponential function 7.27(10)-3 

Xexp{-9.851[(i?/i?o)--l]}. With this result and the 
constants given following Eq. (33), <rp(R) can be written 
as 

<rp(R) = -7.82(10)-5exp{-9.851[(Je/tf0)-l]} sin20. 
(38) 

Insertion of Eqs. (37) and (38) into Eq. (35) gives the 
result 

(ap)= -5.21(10)-5(47rpi?o3)/(r*). (39) 
Here 

I(T*)= [ [exd-9.S51(r-l) 

-{exp[-11.48(f- l ) ] - r - 6 }J \rHr, (40) 

where r=R/R0 and T* = kT/e'. The evaluation of this 
integral, which, together with the other calculations de
scribed in this section, was done on a computer, is of 
some interest because it gives the dependence of (<rP) 
on temperature. The values of I(T*) at a number of 
values of T* are given in Table I. 

At room temperature, r*=1.31 and I(T*) varies 
slowly with T* in this region. Thus, it is expected that 
the variation of (<rp) with temperature will be too 
small to be observed, which is in agreement with the 
experimental results.1*2 By plotting the results in Table 
I it is found that J(1.31) = 0.267, and our final result 
for (ap) is 

<crp>=-2.85(10)-7p.. (41) 

where the density p is in amagats. One amagat is the 
density of an ideal gas at 273°K and 760 mm Hg 
pressure. The agreement of this result with the experi
mental result1*2 

<<rp>=-4.3(10)-7p (42) 

is only fair, but is as close as can be expected from an 
approximate calculation of this type. Thus we may con
clude that exchange interactions between colliding Xe 
atoms are responsible for the observed chemical shift. 

Since Torrey3 has established the connection between 
the chemical shift resulting from collisions and the re-

TABLE I. Values of the integral I(T*) which determines the 
temperature variation of the chemical shift in gaseous xenon. 
T* is the reduced temperature kT/e', where e' is a close approxi
mation to the maximum energy of attraction between two Xe 
atoms. 

rp* 

I(T*) 

1.0 

0.299 

1.5 

0.254 

2.S 

0.244 

5.0 

0.277 

10.0 

0.358 

25.0 

0.557 

laxation of Xe129, there is no need to repeat this cal
culation. Moreover, Torrey3 has pointed out that the 
relation between the chemical shift and the relaxation 
time does not depend critically on the way ap varies 
with R. Thus, his result is not appreciably affected by 
the fact that it is the short-range exchange forces rather 
than the longer-range van der Waals forces which 
produce the chemical shift. 

Finally, it may be pointed out that a calculation 
similar to the treatment of the van der Waals forces 
shows that the chemical shift due to an external elec
tric field acting on an Xe atom is also negligible. Thus, 
even in collisions of an Xe atom with polar molecules, 
the chemical shift and relaxation of Xe129 are determined 
solely by the exchange interactions. Thus, measurement 
of the chemical shift in mixtures of Xe with other gases 
might shed light on the exchange interaction of Xe with 
various species, although this method will be limited by 
the fact that the chemical shift is small and hard to 
measure except in pure Xe at high pressures. Alter
natively, it might be possible to obtain nuclear polariza
tion of Xe129 using techniques analogous to those 
used to obtain polarized He3.21 The loss of polarization 
of such a sample upon introduction of a buffer gas 
would be a measure of the strength of the exchange in
teractions between the Xe and buffer gas particles. 
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